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Abstract In this paper, we introduce JNET, a novel constraint representation 
and reasoning framework that supports procedural constraints and constraint at- 
tachments, providing a flexible way of integating the constraint system with a 
runtime sofrware environment and improving its applicability. We describe how 
INET is applied to a real-world problem - NASA's Earth-science data processing 
domain, and demonstrate how JNET can be extended, without any knowledge of 
how it is implemented. to meet the growing demands of real-world applications. 

1 lntroduction 

Constraint-based reasoning has been shown to be usefbl in representing and reason- 
ing about such diverse problems as graph coloring, scene labeling, resource allocation 
[27,24]> and planning and scheduling [10,11,21]. In theory, the problem in hand is 
formalized as a constraint satisfaction problem (CSP) and is solved by using CSP algo- 
r i t hms  such as backtracking. In practice, real-world applications often involve complex 
constraints that do not fall into the constraint definition in textbooks or in research pa- 
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straint systems [1,2,6]. It is indeed the case that more and more commercial systems 
are available with more comprehensive built-in constraint libraries, and some even al- 
low users to extend the constraint library by implementing domain specific constraints. 
However, extending a constraint library is not a ultimate solution [20]. not mention be- 
ing a great burden for the user of a constraint system to extend the system itself. There 
are many real-world applications, for example. the application of constraint-based plan- 
ning to processing earth-observing sateiiite data [I  31, where the consuaints involved are 
arbitrarily complex anii dynamic, extending a constraint library may not be sufiicient or 
even feasible. 

M7e are applying constraint-based planning to software domains like the Earth- 
science data processing domain. Earth-science data processing is the problem of trans- 
forming low-level observations of the Earth system, such as data from Earth-observing 
satellites and ground weather stations, into high-level observations or predictions, such 
as crop failure or highfrre risk. Given the large number of socially and economically 
important variables that can be derived from the data, the complexity of the data pro- 
cessing needed to derive them m d  the many terabytes of data that must be processed 
each day, there are great challenges and opportunities in processing the data in a timely 
manner, and a need for more effective automation. Our approach to providing this au- 
tomation is to cast it as a planing problem: we represent data-processing operations as 
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planner actions and desired data products as planner goals, and use a planner to generate 
data-flow programs that produce the requested data. 

Constraints arise naturally in this planning problem. Specifications of data inputs 
and outputs include constraints indicating geographic regions of interest, thresholds 
on resolution, data quality, file size, etc. Specifications of data-processing operations 
include constraints relating the inputs of the operations to the outputs, where inputs 
and outputs are complex objects such as satellite images and weather forecast data. For 
example, scaling an image creates a new image whose dimensions are some multiple 
of the dimensions of the origihal. In the course of planning, additional constraints arise, 
specifying how parameters of an action depend on the parameters of other actions in the 
plan. Because of the complex objects involved in the constraints and because the world 
is large and dynamic, it is impossible to enumerate in advance all possible objects, 
such as satellite images, much less provide an explicit representation of the constraints 
among them. Most significantly, many of the constraints in the data processing domain 
are very complex: but are implemented as executable code in a software environment. 
Reimplementing them in a constraint reasoning system would not only be difficult, but 
would also violate the principle that information should exist in only one place. 

To make matters worse, even the planning domain can change dynamically. In or- 
der to accommodate the chansing availability of data feeds and other resources and to 
incorporate new Earth system models, some of which are prodiiced automatically by 
machine learning algorithms, the planner must be able to handle the addition and re- 
moval of planner actions, data types and other components in a plug-aizd-pla?; fashion, 
even during plan construction. Some of these definitions, such as thosc corrcspondinp 
to newly learned Earth system models, are previously unseen components received re- 
motely by the planner. Since any of these definitions can include arbitrary constraint 
definitions: the set of constraints that are available also changes dynamically. 

We would like to integrate the constraint reasoning system with the runtime soft- 
ware environment so that the operations provided by the environment can be used as 
constraints. We would like the constraint system to queiy the environment, to dynam- 
cally determine what objects exist and what attributes or properties those objects have. 
Doing so requires bein% able io define types in the constraint system thai correspond to 
entities within the runtime environment and to define constraints in teims of operations 
supported by the runtime environment. 

The procedural constraint reasoning framework (we wi!l cd l  it CNTT, for Con- 
straint NETwork) introduced in [18,19], comes close to providing the capabilities we 
need. CNET allows implementation of procedure constraints, but in a static Constraint 
library. It would be difficult, if not impossible, to code the complex and dynamic con- 
straints in the data processing domain. 

We have implemented a hybrid constraint reasoning system, called JhET (for Java 
constraint NETwork), as a component of the planner-based agent called IMAGEbot 
[ 131, as shown in Figure 1. JNET builds upon the CNET, not only extending the ChET 
constraint library, but more importantly, providing a better way to model domain spe- 
cific constraints; that is, it allows arbitrary, complex constraints to be defined at run- 
time in a plug-and-play fashion using constraint attachineizts, constraints specified in 
terms of functional Java methods, which are concise and simple to specify without any 



Fig. 1. The architecture of MAGEbot 

knowledge of the workings of JNXT but which interact well with the JNET search and 
propagation algorithms. 

The contriiutions of JlWT include the use of regular expressions to represent string 
domains [15], support for universally quantified constraints [14]. constraints over struc- 
tured objects, and planning-graph-based constraint propagation algorithms (to be re- 
ported). but this paper focuses on the comtraiizt attaclznients which allow JNET to di- 
rectly interact with a runtime environment. greatly improving applicability of constraint 
techniques. 

The remainder of the paper is organized as follows: In Section 2, we present the 
JNET framework. in Section 3, we discus the application oi J N E T  to data processing. 
In Section 4. we briefly review related work. In Section 5. we summarize our contribu- 
tion. 

2 Procedural Reasoning Framework 

The architecture of IM-4GEbot is described in Figure 1. A planning problem, specified 
in the DPADL language f121. is reformulated in the IMAGEbot Planner as a CSP. This 
CSP is handled by M T ,  which will be discussed in this section. We bezin by reviewing 
some needed CSP concepts and notations. 

2.1 Constraint Satisfaction Problems 

A Constraint Satisfaction ProbIem (CSP) consists of variables, domains, and constraints. 
Formaiiy, it can be defined as a tripie di,D,C> where X = ( ~ 1 . ~ 2 . .  . . ;xn} is a finite 
set of variables, D = { d ( x l ) , d ( x 2 ) ,  . . . ,d(x, j )  is a set of domains conraining values the 
variables may take, and C = {Cl. Cz, . , . .Cm} is a set of constraints. Each constraint Ci 
is defined as a relation R on a subset of variables V = {x,;~,. . . . ;xk), called the con- 
straint scope. R may be represented extensionally as a subset of the Cartesian product 
d(x,) x d ( x j )  x . . . x d(xk) .  A constraint C, = (x; R,) limits the values the variables in 
V can take simultaneously to those assignments that satisfy R. A solution to the prob- 
lem is an assipment of values to variables in X satisfying constraints in C. The central 
reasoning task (or the task of solving a CSP) is to find one or more solutions. 

Many search and propagation algorithms have been developed for solving constraint 
problems [22]. However. constraints involved in real-world applications, such as the 
data-processing domain. represent new challenges as to how to represent these con- 
straints. Constraint procedures are introduced to address the issue. 



2.2 Constraint Procedures 

The idea of procedural reasoning in constraint satisfaction [ 181 is to augment a general 
constraint search algorithms with specific procedural methods that can quickly solve 
certain types of subproblems and prune a search space that contains no potential so- 
lutions. In a certain sense, similar techniques have been widely used in solving binary 
CSPs: that is, enforcing arc-consistency while searching for solutions by backtracking 
[25]. There have been many algorithms published for enforcing arc-consistency [3] ,  but 
the question of how to detect and then remove inconsistent values has largely been ig- 
nored, because it seems to be a trivial impleinentation issue when dealing with binaii 
constraints, which can be uniformly represented as a 0-1 mamx [assuming finite do- 
mains). However, when it comes to non-binary constraints, enforcing local consistency 
relative to a constraint is not obviously a trivial task. For example, let z > x + y be a 
constraint on 3 integer variables over domain {0,1,2}. We know that z cannot take 0, 
that x and y cannot take 2 simultaneously, and that < 1 ~ 0, l  > is not a consistent triple, 
but how to identify these inconsistent values. inconsistent value pairs and triples is not 
trial anymore. Even for this simple constraint, there are many ways to implement it: 
some may eliminate inconsistent values, and some may eliminate value pairs or triples. 

In fact, constraints in different application domains are represented and enfarced 
in different ways. In addition, many constraint problems contain simple functional re- 
lations (e.g. arithmetic equations) and simple subproblems (e.g. linear equations with 
unknowns) that can be solved quicWy by using existing algorithms. The question be- 
comes l> how to uniformly represent constraints that arise in different applications; 
2) how to take advantage of such algorithms in order to significantly improve search 
efficiency. The procedural reasoning framework addresses this question [ 181. 

A constraint procedure p is a function that maps a CSP B = (X ,D ,C)  to another 
CSP P’ = (X:D’:C‘) such that: 1) d’(xi) d(xi) for each xi EX: d(xi)  E DI d’(xi) E D‘: 
2) for each constraint Cfl = (&z>R/z)  E C there exists a constraint C;? = (Vh>RA) E C’; 
such that Cfl and Ci7 have the same scope and RL C: RJ,. 

The concept of constraint procedures provides a uniform and efficient method to 
represent and reason with constraints. In terms of representation, constraint procedures 
can be used to define any kind of constraints over any kind of variables. In fact, by the 
CSP definition in Section 2.1, a constraint on a subset of variables can be seen as a 
function that maps the iiiiiversal relation oii the vwiable subset into a ieszicted relatic:: 
on the same variabies defined by the constraint. Take constraint z > K + y as aii example; 
the universal relation on these 3 variables is a set of 27 triples {< O,O,O >, < O,O, 1 > 
..., < 2,2,2 >}, and the restricted relation on these 3 variables is a set of value triples 
without any inconsistent ones. If the constraint can be seen as a function mapping this 
universal relation to the restricted relation, then it can be represented as a procedure, 
which is suppose to eliminate inconsistencies when executed. 

From the reasoning point of view, constraint procedures can be applied for the pur- 
pose of both maintaining consistency and searching for a solution. For example, if 
< 1;O: 1 >is assigned to < z:x:y >, executing the constraint procedure should return 
a failure. However, it may do more than just maintaining consistency. For example, 
when 1 is assigned to a procedure can eliminate 2 from the domains of x and )I. If 
< 1:O >.is assigned to < z,x >, the procedure can eliminate both 1 and 2 from the 
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domain of r. Now variable y has only one value left, so there is no need for search on 
this variable. 

2.3 Constraint Attachments 

The idea of constraint procedures is great, but how to implement constraint procedures 
is another issue. The good news is that the procedural reasoning framework - CNET - 
is implemented in C++ at NASA Ames and it has been successfully applied to solving 
constraint problems in many NASA missions (e.g.? the MAPGEN Planner, used to gen- 
erate command sequences for the Mars Exploration Rovers, uses part of it) . However, 
it still falls short of our requirements in the data processing domain, as discussed in 
Section 1, which leads us to extend the framework to include constraint attachments. 

A key goal of constraint attachments is to allow domain-specific constraints to be 
expressed intuitively, with no knowledge of the internals of the constraint reasoning 
system (e-g., JNET in this case), and loaded or unloaded at runtime in a plug-and-play 
fashion. Thus, the constraints should contain no reference to JNET MI calls or data 
structures such as Variable, Value, Domain, etc. 

In keeping with our goal of simplicity, we define a constraint attachment as a set 
of functional methods, each of which determines the value(s) of one variable based on 
the value(s) of the others. This decision is based entirely on the fact that functions and 
variable assignment are such a familiar idioms, being the building blocks of the most 
popular programming languages. Each method takes a list of arguments as input vari- 
abIes and returns the calculated result for its output variable. For example, the constraint 
x + y = z would, in general, include three methods: z +- x'+y. x +- z - y. and y +- z - x. 
The method z +- x+y calculates z's domain based on the domains of the given variables 
x and y,  and it is usually invoked when either or both domains of x and y changes. 

Conceptually, P specifies the arguments and return values of the method rn as a list, 
{ ~ . a l ? .  . .a,,}: where the first argument, QO. designates the variable that will be as- 
signed rhe rerurn value of rn and ~. . . ,a, designate the variables that will provide the 
arguments to m. The arguments ai are not just variables. however. If we were only in- 
terested in implementing amchments that took singletons as arguments and returned 
singletons as results, then all we would need for P would be a list of variables. Instead, 
wc &OW Llle doliiain modelei io specie that aii mpmeii i  repieseiis ai eiifiie domais, 
which may be in the form of a finite set or an interval. Thus, in addition to the vari- 
able, it is also necessary to spec@ what form the domain should take: a singleton, set 
or interval. Each argument ai, then, is a pair or;,ti>, where xi is a variable from the 
constraint network and ti specifies the form that the domain of xi should take; ti f{ 1, 
1-31, 1-31, 5), where 1 is used to denote a sin,oletonl and 1-31 denote the lower and 
upper bound of an interval, respectively, and 5 denotes a finite set. The method m will 
only be applicable if each of the domains d(xi) can be converted to the representation 
tl required by m. For example, if ti =L3!, then O(+K~) must be a numeric domain whose 
values all fall within a given closed interval, with no gaps. If that is the case, then the 
value of aiwill be the lower bound of that interval. The choice of domain representation 
is based on what can conveniently be expressed without reference to JNET internals or 
special data structures. In particular, by splitting the calculation of interval domains into 

Fuiiiiaiiy, i i r ~  iiii&iiiieiii is ii pair .c~?z>, shc ic  P is 2 S ~ ~ Z L ; ~ X X  ~ y d  ,X is 2 ??z,D~!Ec'. 
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separate calculations on the upper and lower bounds, we ensure that the user-supplied 
code need only refer to single values of the appropriate type or sets, both of which are 
provided by all major programming languages. 

2.4 Comparing attachments to procedures 

In general, the notion of a constraint procedure encompasses a wide range of constraint 
reasoning techniques, from simple propagation to complete search methods. For exam- 
ple, any constraint algorithm that finds all solutions to a given CSP can be considered as 
a procedure constraint over all variables, because it is a function that maps the univer- 
sal relation on all variables to a restricted relation containing all solutions. Constraint 
attachment, as a different constraint representation techniques, can also be considered 
a special case of constraint procedure. 

An advantage of constraint attachment over constraint procedure is its flexibility in 
representing and reasoning with constraints. Given a constraint attachment, not only 
can a set of functional methods be selectively implemented, but also the implemented 
methods can be selectively executed by a constraint propagator or a constraint solver 
without any tailoring of the propagator and the solver to the specific constraints. This 
selecrivz execution can exploit the knowledge of what variable domain a given method 
will affect and what variable domains that method depends on, using the signature P 
The more general constraint procedures are more opaque. 

Most importantly. constraint attachment allows constraint to be defined dynami- 
cally at runtime and allows executables in the application domains to be invoked by 
constraint execution, which provides a flexible way of integating the constraint system 
with a runtime software environment and significantly improves applicability of con- 
straint systems. We will discuss in detail how RET interacts with a dynamic runtime 
environment in Section 3. 

2.5 Implementation 

JNET is implemented in Java. It contains classes for variables, domains. constraints, 
and search and propagation algorithms. Each variable is associated with a domain. A 
variable domain can be finite or infinite, in which case it is represented as an an interval 
(for iiiiiiieric tpes) ,  iegii!x expression ( f ~ r  strixg types), CT symbolic set (for nhiprf ""JJ'-' 

The JNET constraint solver contains several search algorithms, including depth-first 
search, backjumping and conflict-directed backjumping, all interleaved with the JNET 
propagator, which controls the execution of constraints; that is, when the solver assigns 
a value to a variable, the propagator will execute all those constraints containing the 
variable and will continue to execute constraints until there are no more changes. The 
propagation essentially maintains generalized arc-consistency [20]. If a variable domain 
becomes a singleton during propagation. it is considered to have a value assignment and 
is removed from the searchable variable set to avoid unnecessary search. Therefore, 
propagation plays an important role in the problem solving process. 

The constraints are implemented as procedures or constraint attachments. A pro- 
cedural constraint consists of a set of variables (the scope) and a procedure (i.e.. an 

types). 



Algorithm 1 Implementation of Constraint x i -y  < z 
iet  d ( x )  = [xmin,xmar], doJ) = lymin,ymax], a n a  d ( z )  = [ z m i ~ , ~ ~ ]  

executeQ = {x,y,z}) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

if d(x) ,  dCy), or d(z )  is empty, return failure; 
zmin i xmin + ymin; xmax +- zmar -qmin; ymar +- zmar - xmin; 
if (zmin # --) d(z) - d(z) n [ z m i n , z m ]  
if d(z) is empty return failure; 
if (xmax f -) d(x )  + d(x) n [xmiri.xmar] 
if d(x) is empty return failure; 
if (yvmax + -) d(y) - d(y) n I\II1zin:vmzx] 

if dtv)  is empty return failure; 
return success; 

Algorithm 2 Implementation of the attach constraint 
Let P be the signature and rn the Java method as defined in Section 2.3. 

evecute !.P> .E?! 

I .  for each<xi:f,>EP where i > O  
(a) if (d(xi) is not r ep resen tab le  a s  a domain of t y p e  t; €{I. [s!, [q,.S}) 

(b) else let di be d(xi) represented  as  type t i ;  

return success; 

2. letvo -invokem(dl....:d,,) 
((vg) ifrg= 1 

4. i f  (d( .q)  is emptyj return failure 
5. return success; 

execzce  ( ) me&od) thattdorces Lbe underlyir?g c o n s m i r ? ~  on ths va-irh!es. E x t c c t k ~  3 

a cms!raint e!imina:es inconsistent values from t ! e  domaics cf :wkb!es i:: the stop-- c 1  

that is, it examines the current domains and eliminates any values that are not consis- 
tent with values remaining in domains of other constrained variables. If execution of a 
constraint results in an empty variable domain, e x e c u t e  ( ) returns failure indicating the 
violation of the constraint. In the current version, the JNET constraint library contains 
about 30 application-independent constraints, such as equa l i ty ,  l ess - than ,  maximum 
and minimum, c a r d i n z l i t y ,  regular expression match and string concatenat ion.  For 
example, an implementation of consaaint x + y < z . where x:  y: and ZR are interval vari- 
abies, is described in Algorithm 1. 

Constraint attachments are implemented on top of procedure constraints. In particu- 
lar, there is a procedure constraint, a t tach .  in M T ,  which implements the exez~te (<P: n o  i 
method for an attachment <P.nz>, as shown in Algorithm 2. 



Constraint attachment allows the JNET users to define domain-specific constraints 
not included in the JNET library by implementing some attached functional methods 
and creating new a t  t a c h  constraint instances to call these methods. More conveniently, 
new instances of actach constraints can be created to call the methods or algorithms 
already implemented in the run-time environment to enforce the user constraints, which 
we discuss in the next section. 

Source Vanable3 /Frequency1 Resolution Coverage ’ 
Terra-MODIS Fp .mAI  I 1 day 1 lkm, 500m, 25Om global 
- Aqua-ivlODiS FPA&ZM 1 I day / 1 ~ ~ i , ~ ~ m , 2 5 0 m ,  giobat 1 

AVKRR FPA WL AI 10 day 1 km 1 global 
SeaWIFS FPARJLAI 1 day 1kmx 4km I global 

DAO temp, precip, rad, humidity 1 day 1.25 deg x 1.0 dezl global 
RUC2 temp, precip, rad. humidity 1 hour 1 40 km 1 USA 

- CPC temp, precip 1 day point data 1 USA 
Snotel temp, precip 1 day pointdata 1 USA 
GCIP radiation 1 day 1/2 deg /Continental 

NEXRAD precipitation 1 day 4 k m  I USA 

3 TOPS Case Study 

As a demonstration of our approach, we have applied our constraint-based planning 
system-KMAGEbot-to the Terrestrial Observation and Prediction System (TOPS, 
http://www.forestry.umt.edu/ntsg/Projects/TOPS/), an ecological forecasting system that 
assimilates data from Earth-orbiting satellites and ground weather stations to model and 
forecast conditions on the surface, such as soil moisture, vegetation growth and plant 
stress. Prospective customers of TOPS include scientists. farmers and fire fighters. With 
such a variety of customers and data sources; there is a strong need for a flexible mecha- 
nism for producing the desired data products for the customers, taking into account the 
information needs of the customer, data availability, deadlines, resource usage (some 
scientific rnodels take many hours to execute) and constraints based on context (a sci- 
entist with a palmtop computer in the field has different display requirements than when 
sitting at a desk). M4GEbot  provides such a mechanism, accepting goals in the form 
of descriptions of the desired data products. 

The goal of the TOPS system is the monitoring and prediction of changes in key 
environmental variables. The inputs needed by TOPS include satellite data, such as 
Fractional Photosynthetically Active Radiation (FPAR), and weather data, such as pre- 
cipitation. There are several potential candidate data sources for each input required by 
TOPS at the beginning of each model run. The basic properties of the inputs are listed 
in Table 1. Even with this fairly small model, there is a good variety of inputs we need 

to select from. depending on the desired data products. 



In addition to the attributes listed in the table, data sources also vary in terms of 
quality and availability-some inputs are not always available even though they should 
be. For example, both the Terra and Aqua satellites experienced technical difficulties 
and data dropouts over periods ranging from few hours to several weeks. Depending on 
the data source, different processing steps will be needed to get the data into a common 
format- We have to convert the point data (CPC and Snotel) to grid data, which by itself 
is a fairly complex and time-consuming process, and we must reproject ,orid data into a 
common projection, subset the dataset fiom its original spatial extent, and populate the 
input grid used by the model. The data are then run through the TOPS model, which 
generates the desired outputs. 

The architecture of IMAGEbot is described in Figure 1. Planning domains are spec- 
ified in a language called the Data Processing Action Description Language (DPADL) 
[12], which allows the description of planning domains that involve data processing 
operations as well as the constraints appearing in those domains. 

The planning specification, which contains object types and attributes, functions 
and relations. as well as planner actions and goals, is loaded by the parser and passed 
to the planner. The planner constructs a data structure we call a Zifredplunning graph to 
concisely represent the search space. A lifted planning graph is similar to the plannins 
graph data structure used by Graphplan-based planners [4]. A planning graph is a lev- 
eled graph of alternating “proposition” and “action” !evelsl in which the !%st !eve! nodes 
comprise all propositions that are true in the initial state, the second level nodes repre- 
sent all ground actions whose propositions are present in the first level, the third level 
contains all propositions achievable by executing actions in the second level, and so 
on. Arcs are present between an action and the propositions in its preconditions (prior 
level) and its postconditions (following level). Because a grounded representation is 
not an option in data processing domains, where the universe is large, uncertain and 
dynamic, we use a iijjed pianning graph? which can cvrriaiti vht hbles and consti;liiit..s 
among those variables. and in which the “proposition“ level mainly comprises objects, 
with arcs to the inputs and outputs of actions. For example. the planning graph in 2, 
constructed from a planning specification file in Figure 4. contains objects, shown as 
round nodes: and actions shown as rectangular nodes. 

Fig.2. A portion of the planning graph corresponding to a plan from the TOPS domain. The 
rectan,oular nodes represent actions and the round ndes represen: objects that are inputloutput 
by the actions. The labels inside object nodes are attributes of the objects. 

After the initial graph is constructed. a CSP representing the search space is built. 
The uncertain and dynamic nature of the planning problem requires us to interleave 



planning, constraint reasoning and execution, so in general there are subsequent iter- 
ations, in which the graph is expanded, dead ends are pruned, and the corresponding 
variables and constraints are added or removed from the CSP. This requires JNET to be 
able to handle dynamic CSPs. 

The CSP corresponding to the planning graph in Figure 2 contains 776 variables and 
964 constraints. There are 280 boolean variables representing the arcs (causal links) and 
conditions in the plan, 164 integer variables and 11 1 string variables representing action 
parameters and object attributes, and 107 object variables representing TOPS objects 
and instances, as well as action parameters and object attributes. Except for boolean 
variables, most variables initially have infinite domains, represented as symbolic sets, 
intervals, and regular expressions for object, integer, and string variables respectively. 

There are 326 instances of attach constraints for interaction with the TOPS en- 
vironment, and the rest are procedural constraints reflecting the planning problem. A 
part of the constraint graph from the planing graph in Figure 2 is shown in Figure 3. 
The constraints, for example, CondEqual( tout. year=y. tout. year, y).  means that 

Fig. 3. A portion of the constraint network from the planning graph in Fipre 2 

variable tout. year=y is true iff variable touc .year equals variable y .  In general, 
we have boolean constraints such as 

IrnpliesXOR(c,q,. . . ,x,),  Le., c * x1 €3. . . @xn 
CondOr(c.xl. . . . , xn). ie., c w x1 L' . . . 'V x, 
CondAnd(c.xl~. . . ,x,),  i.e., c e? X I  A . . . f x, 

numerics! conshaints such 2s 

hfin(:,xl,. . . ,x,),  i.e., z = rnin(x1,. . . ,x,} 
Product(zx1,. . . ,x,), i.e., z = XI x . . . x x, 

string constraints such as 

Match(c,x, y ) ,  i.e., c ++ nlatch(x,y) 
Concat(z,x,y), i.e., z = x + y  

and others. a11 predefined in the JNET constraint library. 
As mentioned in Section 2.5, there is only one attach constraint class implemented 

in the JNET library; the user implements attached methods and creates new instances 
of attach constraints to call the attached methods. In IMAGEbot, however, the parser 



generates attachments from the DP4DL specification by generating Java methods from 
in-lined code (delimited by $. . .$) appearing in attachment definitions, together with the 
signature, from which the method's parameter list and return type can be determined. 
The parser then compiles and loads the generated Java code, and uses reflection to 
obtain references to the newly defined methods from their names. 

For example, the following se,ment of DPADL code specifies that type T i l e  cor- 
responds to the Java class tops .modis .Tile, which is a rectangular satellite image in 
some specified projection covering some definite region of the Earth. A tile has a num- 
ber of attributes, including the projection, the instrument used to capture the image, 
the time and location where the image was captured, the pathname where the image is 
stored and a unique identifier that can be used to reference the tile. 

tppe Tile is object mapsto tops.modis.lile { 
...... 
key String uniqueid { 

constraint { 
value(this) := $this.getUId()$; 
this(va1ue) = $lile.findTile(value)$; 

1 
1 

boolean covers(float 1on.float lat) { 
constraint ( 

...... 
(this)([lon].~at],d, y, p, value) = ($ if (value) 
return tm.getTiles(lon.max, lat.min, lon.min, lat.max. d, y. p); 
else return null; $}; 

? 
I 
...... 

I 
The attribute unique16 is declared as a key of a tile, meaning there must be a one- 

to-one mapping between tiles and their unique identifiers. The constraints that enforce 
this one-to-one correspondence are specified using an actach constraint instance wirh 
two methods. generated by the parser: 

<{a,luer 1>, 
< { e t h i c ,  I>, a v u l u e ,  b}, Tile rn.,(String x )  (return Tile.findTile(x);)> 

I>]. String mi (Tilex) (return x.getUIDO;)> 

where xvalue and xt& are variables, the value 1 is the singleton domain type as discussed 
in Section 2.3. 

The value 1 in the above attachments means that variable x,lue can only be as- 
signed a value if variable x r h  is singleton, and vice versa. It is also possible to define 
constraints that work for non-singleton domains, by indicating that an argument or re- 
turn value represents the upper or lower bound of an interval (L51, (51) or a finite set 
5. For example, another attribute of a ? i l e  in the above DPADL code is that it covers 
a given longitude and latitude. Given a particular longitude and latitude. the constraint 
solver can invoke a method to find a single tile that covers it. but it can do even better. 



Given a rectangular region, represented by intervals of longitude and latitude, it can 
invoke a method to find a set of tiles covering that region. In this case, P =( elhis,.$>, 

and m is a method that returns a Collection of T i l e  objects. 
The above methods, generated from the inline code and the method signature, are 

compiled and loaded when the type definition is parsed, and references to the methods 
are obtained using Java reflection. This enables constraint attachments to be defined at 
runtime, without requiring modification to, or even access to, the source code of JNET 
or constraint library. 

are treated uniformly: whenever the domain of a variable changes, the constraints asso- 
ciated with the variable are executed to propagate the changes, which is controlled by 
JhET propa, oators. 

The planner controls the high-level search, guided by heuristics derived from a 
Graphplan-style [4] reachability analysis. JNET ensures the underlying CSP is con- 
sistent by propagating changes made by the planner. After a pla? is generated, JNET 
does its own search to find values to variables representing action parameters to make 
actions executable. This is an iterative process I:ivol ving possibl:: backtracks; that is, if 
there are no valid parameters for a chosen action, the planner has to search for another 
plan; if it is impossible to extract a plan from the current planning graph, the planning 
graph has to be extended. At the end, we have a plan and a data product resulting from 
executing the plan, as in Figure 4. 

CYlon; L31>> ab,*: r31>, '=lar, 13J>>-==lar, m, a d >  1>, a y :  l>, ep, 1>, GYyalue, 1>} 

Once created and added to JNET, both types of constraints-procedures and attachments- 

Fig. 4. The IMAGEbot development environment, running as a jEdit plugin. The frame on the left 
shows one of the files comprising the TOPS domain description. The frame on the upper right 
shows an abstracted view of a plan from Figure 2 ,  with one action node displayed in detail. The 
frame on the lower right is the data returned by the TOPS server after executing the plan. 



4 Related Work 

There have been a good number of constraint systems developed in recent years. Many 
have been successfully applied to various real-world combinatorial optimization prob- 
lems such as planning and scheduling, resource allocation, time-tabling, configuration, 
etc., and more will be developed in order to meet growing application needs in terms of 
enhanced modeling and solving capacity. 

Early systems such as CHlP [2], CLP(R) [17], and Prolog III 191 extend Prolog 
with additional constraint solving over a pvticular domain of interest, where the con- 
straint solver in the system works as a black box responsible for constraint propagation. 
The black-box approach, which has very limited modeling power, has evolved into 
glcrss-box approach, as in CLPW) [8]: Eclipse [6],  ILOG Solver (http://www.ilog.- 
com), JCL (http://liawww.epfl.cN-torrens/Project/JCL$). and Koalog Constraint Solver 
(http://www.koalog.com/), where the underlying constraint solver can be tailored to the 
users’ needs, and user conseaints can be defined and added to the constraint system. For 
example, CLP(I3) is a constraint logic programming language with finite domain con- 
straints. Its implementation is based on the use of a single primitive constraint, variable 
X ir, range r, that embeds the core propagation techniques such as node end arc ccnsis- 
tencies. The more complex user constraints such as linear equations or inequations can 
be defined and compiled into the primitive constraint. Constraint programming tools, 
ILOG Solver (and JSolver), and Koalog Constraint Solver (which was first released in 
later 2002), packaged a set of primitive constraints and of implemented basic constraint 
search algorithms. These tools are open and extensible in that new constraints can be 
added, and new search algorithms and heuristics can be developed by the user. 

Compared to the constraint systems mentioned above, the constraint procedure 

represented uniformly in a more zeneral forrn-procedure. The procedural reason- 
ing kamework (CNET), which was developed in C++ as at NASA Ames, has many 
capabilities that are missing from previous constraint systems, such as: i) arbitrary 
constraints-there is no limit on the types of constraints that can be handled; ii) dynamic 
variables and domains-the set of variables and their values need not be enumerated be- 
forehand; iii) real-valued variables-constraints may involve mixtures of discrete and 
con:inuocs variables; and iv) hybrid reasonixg-diiYerent reascnizg techniqxs c m  be 
iitilized iviLlifi rhe s z i e  system. 

JNET extends CNET to support string domains, quantified, structured objects, and 
other features, including constrairzr anuchments. The idea of constraint attachment can 
be traced back to procedure attachment in [ 163, where some specialized procedures (or 
functions) are implemented to evaluate certain variables and those procedures are ar- 
tached to solvers. It has been noted in [I81 that this kind of attachment applyin, 0 to con- 
straint satisfaction is very limited in terms of reusability, global algorithm implementa- 
tion, and integration with constraint solvers. Our idea of attaching functional methods 
to the execution of constraints is motivated by the requirement of integrating JNJT to 
TOPS (more specifically, the requirement of using executables in TOPS environment), 
and a general mechanism of how to do so is implemented in JNET. In addition to the ad- 
vantases of CNET over other constraint reasoning tools. JNET provides the capability 

fi-aiiew-oik C:yTT i 19; shz-es. c&-&~- tl,e=re:ica! prin+-~!es, pycep? 5h.e cc~s-aj~r~ zrp 

. 



of integrating constraint reasoning system with applications domains, which we believe 
is the right direction to improve the applicability of constraint technologies. 

There has been little work in planner-based automation of data processing. Two 
notable exceptions are Collage [23] and Mvp [7 ] ,  both of which also rely heavily on 
constraints. Both of these planners were designed to provide assistance with data anal- 
ysis tasks, in which a human was in the loop. directing the planner. Consequently. both 
planners are based on action decomposition, which is more intuitive to many users. 
In contrast, the data processing in TOPS must be entirely automated; there is simply 
too much data for human interaction to be practical. [5]  addresses worldlow planning 
for computation grids, a similar problem to ours, though their focus is on mapping 
pre-specified workflows onto a specific grid environment, whereas our focus is on gen- 
erating the workfiows. 

5 Conclusion 

We have described the JNET constraint reasoning system and discussed its application 
to a data-processing domain. JNET is implemented as a component of the IMAGEbot 
planner-based agent and it provides the planiier with constraint reasoning capabilities. 
As a constraint reasoning system, JNET can be applied to solving constraint problems 
in other real-world application domains. To do so: the user needs to define variables 
and their domains, and specify the constraints using the predefined constraints in the 
constraint library. For modeling application-specific constraints that are not defined in 
the constraint library, JNET provides the user with two alternatives: 

1. Constraints can be implemented as reusable procedural constraints by extending 
the constraint template provided in E T .  This is similar to how user constraints 
are defined in some other constraint systems. 

2. Constraints can be implemented as a set of attached functional methods, which may 
be defined at runtime, without modification to, or even access to. the JNET source 
code. This is the feature makes JNET applicable to many real-world domains new 
to constraint technologies. 

JNET provides an easy way to integrate non-constraint-based services into a constraint- 
based application; any Java classes can be used as types. and any methods provided by 
those classes can be used to implement constraints. This capability is used in IMAGEbot 
to integrate planning with sensing: sensors that return information about a software 
environment, such as the locations of fiies, are implemented as constraint attachments; 
as relevant variables become constrained, different sensors (in the form of attachments) 
are activated, yielding additional constraints which may, in turn, activate other sensors. 
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